
v 1.02 Page 1

Neurosim – Technical Overview
4/2013

Paul King, Redwood Center for Theoretical Neuroscience, UC Berkeley
Contact: paul@pking.org Website: www.pking.org/research/EINet

Contents:

1. Introduction ... 1

2. Model Configuration ... 3
Example Plots ... 3
Running a Simulation – E-I Net ... 5
Running a Simulation – SAILnet ... 7
Inspecting Model Parameters ... 7

3. Object Types and Parameters .. 10
Cell Group .. 10
Input Block .. 12
Net Model ... 15
Measurements .. 18
Plots and Figures .. 20
Printing ... 23

4. Selected Functions ... 24
RunVisionNetworkSimulation .. 24
NetModel_Figure .. 24
NetModel_InitV1eV1i .. 25
NetModel_InitEINet ... 26
NetModel_Init ... 26
NetModel_UpdateFast .. 26

1. Introduction

E-I Net is a spiking neural network simulation with excitatory and inhibitory neurons that
can learn a sparse code from input data. When trained on whitened natural images, E-I
Net learns a distributed representation of Gabor-like receptive fields as found in the
primary visual cortex (area V1).

mailto:paul@pking.org
http://www.pking.org/research

v 1.02 Page 2

The results of the E-I Net simulation are presented in the following paper:

King PD, Zylberberg J, DeWeese MR (2013). Inhibitory interneurons
decorrelate excitatory cells to drive sparse code formation in a spiking
model of V1. J Neuroscience.

This sparse code spiking model is based on previous work by Zylberberg et al. (2011):

Zylberberg J, Murphy JT, DeWeese MR (2011) A sparse coding model with
synaptically local plasticity and spiking neurons can account for the
diverse shapes of V1 simple cell receptive fields. PLoS Computational
Biology.

The MatLab source code and neural network simulator provided here includes all files
needed to generate the results of King et al. (2013). Included and describe here is the
Neurosim spiking neural model simulator which is written in MatLab and can be found in

the "neurosim" directory of this software distribution.

The "sample_data" directory in this distribution contains pregenerated simulation results

saved as MatLab ".mat" files. This data can be regenerated by running the scripts

named "train1_..." through "train4_...". See the _README.txt file for details.

Neurosim is a spiking neural network simulator for modeling neural circuits composed of
populations of cells with identical properties (“cell groups”). E-I Net uses two cell groups:

an excitatory population named "V1e" and an inhibitory population named "V1i". There is

also an "external" pseudo-Cell-Group named "input" that represents the whitened

image input to the simulation.

Cell groups are connected to each other with input-side connection descriptors ("input
blocks"). Each input block describes the characteristics of the connections from an
output cell group to an input cell group, including properties such as the learning rule
and learning rate. Each input block contains a weight matrix that is updated during
learning.

All cell groups comprising the circuit to be simulated are collected in a network model

structure (NetModel).

The simulator allows arbitrary circuit structures to be specified as a configuration input to

the simulation using hierarchically organized MatLab "struct" objects. Model template

files with sets of default structure properties can be found in the files with names like

NetModel_InitXxxx.m.

The function RunVisionNetworkSimulation() takes as input a hierarchical set of

properties describing the network to be simulated. It constructs the network and runs the
simulation using whitened images as training data.

v 1.02 Page 3

2. Model Configuration

Neurosim models a spiking network composed of “cell groups” – populations of neurons
with identical behavior – which are connected to each other via input blocks. An input
block is a matrix of connections in which every cell from a source cell group connects to
every cell in a destination cell group. Each connection has its own connection weight.
Partial connectivity can be simulated by clamping certain connection weights to zero or
by an indirect mapping.

The E-I Net model can be conceptually represented as follows:

Within the spiking network simulator, E-I Net is represented this way:

The model is hierarchically organized, with a model composed of cell groups, which is
composed of input blocks.

Example Plots

Several real-time network plots are available which will be updated periodically while the
simulation is running. 23 different plot types are supported, 6 of which are shown below

along with their plotType name.

v 1.02 Page 4

Selected plot types:

 'spikeRasterAllImage' 'spikeRasterAll'

 'networkDynamics' 'weightDistributionAll'

 'populationActivity' 'STA', 'weightPatches'

v 1.02 Page 5

Running a Simulation – E-I Net

The following MatLab code shows an example simulation experiment (taken from the file

demo1_EINet.m):
simParams = struct();

simParams.numInputSamples = 50000;

simParams.model.modelType = 'V1eV1i';

simParams.model.inputDims = [8,8];

simParams.model.numSamplesPerBatch = 100;

simParams.model.numIterationsPerSample = 50;

simParams.model.meanRateLearning = true;

simParams.model.learningRate = .5;

simParams.model.cg_V1e.numCells = 121;

simParams.model.cg_V1i.numCells = 36;

simParams.model.cg_V1e.in_V1i.learningRate = .7;

simParams.model.autoFigures = {'STA_E', 'STA_I', 'weightDist', ...

 'spikeRaster', 'networkDynamics'};

simParams.model.stats.printStatsEvery = 2000;

randreset(); model = RunVisionNetworkSimulation(simParams);

In the above simulation, a hierarchical set of configuration parameters have been
initialized to describe the simulation. Each line is explained in sequence.

simParams.numInputSamples = 50000;

Run the simulation for the duration of 50,000 training samples. Each input sample will be
an image patch drawn from a random region of a random image in the input image set

(IMAGES.MAT by default).

simParams.model.modelType = 'V1eV1i';

The model substruct describes everything about the model to be simulated. The

modelType provides the name of a preconfigured set of model parameters to load. The

modelType='V1eV1i' is “hard-wired” to initialize the E-I Net model default parameters

by executing the MATLAB file NetModel_InitV1eV1i.m, which contains all the default

parameters.

simParams.model.inputDims = [8,8];

Run the simulation using 8x8 pixel input image patches.

simParams.model.numSamplesPerBatch = 100;

On each training batch, run 100 networks in parallel. This is a good number for speeding
up the math considerably.

simParams.model.numIterationsPerSample = 50;

Run each image patch simulation for 20 time step iterations.

simParams.model.meanRateLearning = true;

v 1.02 Page 6

Use mean rate learning. If meanRateLearning=true, the learning rules will be applied

on the average spike rate across the training sample, as is done in the SAILnet model. If

meanRateLearning=false, then spike-timing dependent plasticity (STDP) is used in

which the learning rate is applied on each time step to the instantaneous average spike

rate at that moment in time. meanRateLearning=true runs faster.

simParams.model.learningRate = .5;

Use a lightly lower global learning rate than the default, which is 1. The true learning rate
for a particular connection is the multiplicative combination of the global learning rate,
the cell-group-level learning rate, and the input-block-level learning rate.

simParams.model.cg_V1e.numCells = 121;

simParams.model.cg_V1i.numCells = 36;

Create a network with 121 E cells (V1e) and 36 I cells (V1i).

simParams.model.cg_V1e.in_V1i.learningRate = .7;

Parameters can also be set at the level of the input block. This example parameter sets

the learning rate for the 'V1i' input block within the 'V1e' cell group. This is the input

block representing the incoming connections from the I cells (the 'V1i' cell group). Any

parameter not specifically declared reverts to a default, and numerous defaults are
defined in NetModel_InitV1eV1i.m.

simParams.model.autoFigures = {'STA_E', 'STA_I', 'weightDist', ...

 'spikeRaster', 'networkDynamics'};

The V1eV1i model has several predefined real-time figures. These figures will be

updated periodically as the learning simulation progresses. The predefined figures

indicated here are the spike-triggered average image patch of the E cells ('STA_E') and

I cells ('STA_I'), the statistical distributions of all connection weights for all input blocks

('weightDist'), the spike raster plot using a fast-drawing line style ('spikeRaster'),

and a plot showing the network dynamics of the active (spiking) cells

('networkDynamics'). These last two plots are specific to only a single simulation run,

and by default, the first run of the most recent batch is displayed.

simParams.model.stats.printStatsEvery = 2000;

A line of statistics will be printed summarizing the state of the network every so often.
This line says to print the statistics after every 2,000 input samples (or 20 batches,
because the batch size is 100). This interval is also used for updating the figures defined
above.

randreset(); model = RunVisionNetworkSimulation(simParams);

This last line runs the actual simulation. The first statement resets the random number
generator, which is optional but convenient for getting repeatable results. The second
statement runs the simulation on a model defined with the previously discussed
parameters. After the simulation completes, the state of the model is returned in model.

model = RunVisionNetworkSimulation({'numInputSamples',10000}, model);

v 1.02 Page 7

This will run the simulation for an additional 10,000 samples. simParams has been

replaced with the line {'numInputSamples',10000}, which will set just the one

parameter numInputSamples., and the additional second parameter, model, has been

passed in to indicate that the simulation should pick up from the current model state.
This approach to simulation allows different models to be stopped and started and
compared. It is also possible to modify the parameters of the model in mid-simulation
this way, for example to change the learning rates or enable or disable a type of cell in
the circuit or a connection input block.

Running a Simulation – SAILnet

The following MatLab code runs a simulation of SAILnet (Zylberberg et al., 2011):

simParams = struct();

simParams.numInputSamples = 50000;

simParams.model.modelType = 'V1eV1i';

simParams.model.modelSubtype = 'SAILnet';

simParams.model.cg_V1e.numCells = 121;

simParams.model.autoFigures = {'STA_E', 'weightDist', 'networkDynamics'};

simParams.model.stats.printStatsEvery = 2000;

randreset(); model = RunVisionNetworkSimulation(simParams);

This script invokes the 'SAILnet' subtype of the 'V1eV1i' model. This subtype (see

NetModel_InitV1eV1i.m for details) includes the same neuron populations as E-I Net

except that the inhibitory neurons have been disabled and the learning rules have been
changed to match the SAILnet model.

Inspecting Model Parameters

The parameters actually assigned to a model, as well as its full structure and current

simulation state can be inspected by displaying the MatLab model struct. Do to this,

type “model” at the MatLab command line. For example, after running demo1_EINet (the

first example above), you can type:

>> model

model =

 fpsMax: 0

 learningRate: 0.5000

 lrateScale: 0.0100

 simTimeUnitSize: 0.0100

 simTimeStep: 0.1000

 simMovingAveInput: 0

 simInitPotentials: 'zero'

 simNoReset: 0

 numSamplesPerBatch: 100

 numIterationsPerSample: 50

 spikeSize: 1

 meanRateLearning: 1

 stdpEnvelopeShape: 'expDecay_continuous'

v 1.02 Page 8

 stdpTimeOffset: 0

 precisionHint: 'double'

 outputCellGroupName: 'V1e'

 refNumCells: []

 cgDefaults: [1x1 struct]

 displayTimeUnits: 'sample'

 debugDisplayEvery: 0

 stats: [1x1 struct]

 modelType: 'V1eV1i'

 modelSubtype: 'cm'

 inputDims: [8 8]

 inputPreprocess: [1x1 struct]

 inputScale: 0.2000

 simMethod: 'cellgroupFastBatch'

 learningRateUnits: 'per100Samples'

 autoStats: {'weights'}

 autoFigures: {'STA_E' 'STA_I' 'weightDist'

'spikeRaster' 'networkDynamics'}

 cg_input: [1x1 struct]

 cg_V1e: [1x1 struct]

 cg_V1i: [1x1 struct]

 autoAnneal: [1x1 struct]

 numTimeUnitsPerSample: 5

 initParams: [1x1 struct]

 cellGroup: {[1x1 struct] [1x1 struct] [1x1 struct]}

 displayTimeScale: 50

 debugDisplayWait: 0

 outputCellGroupId: 2

 snapshot: [1x1 struct]

The fully populated model parameters and defaults are displayed. The three cell groups
are shown as substructs under cellGroup:

For example, the E cells are cell group #2, here:

>> model.cellGroup{2}

ans =

 name: 'V1e'

 numCells: 121

 cellType: 'excitatory'

 isExternal: 0

 displayColor: [0 1 0]

 defLearningRule: []

 defForceDirect: 1

 location: [121x2 double]

 potential: [121x1 double]

 spikeThresh: [121x1 double]

 dspikeThresh: [121x1 double]

 spikedRecently: [121x1 double]

 causalFeedback: []

 targetCount: [121x1 double]

 inputBlock: [1x3 struct]

 membraneTC: 0.9491

 spikeDecayRate: 2

v 1.02 Page 9

 learningRate: 1

 targetSpikeRate: 0.0500

 threshAdaptRate: 1

 updateThreshEvery: 5000

 updateThreshWait: 0

 updateEvery: 5000

 updateWait: 0

 rescaleEvery: 0

 rescaleWait: 0

 spikeRate: [1x1 struct]

The IE connections are the third input block:

>> model.cellGroup{2}.inputBlock(3)

ans =

 connectionType: 'inhibitory'

 numSourceInputs: 36

 name: 'V1i'

 srcId: 3

 numInputs: 36

 blockWeight: 1

 learningRule: 'correlation_measuring'

 learningRate: 0.7000

 constrainWeights: 'nonneg'

 clampZero: []

 inputIndices: []

 spikedRecently: [36x1 double]

 spikeRate: [1x1 struct]

 causalFeedback: []

 weight: [121x36 double]

 dweight: [121x36 double]

v 1.02 Page 10

3. Object Types and Parameters

The sections below explain the properties that can be set on each object type.

Cell Group

Cell groups are the basic unit of computation in the model and correspond to groups of
similarly-typed neurons in biology. A cell group is a population of cells which function
identically and serve a consistent role in a statistically regular circuit.

Inputs to the cell group are organized as a set of input blocks. Each input block is a set
of inputs that are treated in a consistent way, for example excitatory, inhibitory, or
modulatory. Each input block might correspond to a unique neurotransmitter, to a
particular connection type (apical vs. distal), or to a particular connection source (L2/3
cells vs. L5 or L6 cells).

The input blocks are connection points in a canonical circuit which are repeated in a
statistically regular fashion across all the cells of the cell group. Each cell will have the
same number of inputs of each type as all other cells in the cell group.

Connection types (connectionType, also cellType) include:

'excitatory' Input spike increases cell potential by weighted spikeSize

'inhibitory' Input spike decreases cell potential by weighted spikeSize

'continuous' Input value is integrated as a continuous input over

simulation time step interval

'disabled' The connection is ignored

Learning rate:

The learning rate that is applied to the connections in a particular input block is the product of
the following:

model.learningRate Global learning rate

model.lrateScale Global scale factor for learning (to make learning rates

more human readable, and to normalize across
simulation time unit changes)

cellgroup.learningRate Cell group specific learning rate

inputBlock.learningRate Input block specific learning rate

Setting any of these to zero will disable learning at that level.

Cell Group initialization parameters (params):

numCells Number of computational units (neurons) in this group

name Name of this cell group, used to refer to the cell group when

specifying connections.

cellType Cell type (default = 'excitatory'). This is used to select the

appropriate signal processing and weight update rule.

v 1.02 Page 11

'excitatory' Input has a positive effect on potential

'inhibitory' Input has a negative effect on potential

'disabled' Cell group is ignored in all calculations

location Method for allocating cell location. (default = 'tile2D')

'uniform2D' Assign each cell two random coordinates in the range (0,1)

'tile2D' Evenly tile the 2D unit square

matrix If a numeric matrix(numCells,2) is provided, use those

locations

defLearningRule Default learning rule for outputs from this cell group. Only used

during wiring phase. (default = [])

defForceDirect Whether or not to use direct connections by default (only used

during wiring phase)

displayColor RGB color for graphs and plots (default = [1 1 1] = white)

membraneTC Membrane time constant determining potential decay rate in time

units (default = 10)

learningRate Learning rate to apply to all connection weights in the cell group.

Suggested values are between 0 and 1, where 0 = no weight

updates and 1 = recommended 'fast' update rate. Spike

threshold updates are not affected (see threshAdaptRate).

(default = 1).

initSpikeThresh Initial threshold for spiking (default = 1)

threshAdaptRate Learning rate to apply to spike thresholds; weights are not

affected

targetSpikeRate Target spike rate (spikes/interation) for spike rate autoranging. 0

disables autoranging. (default = 0)

updateThreshEvery How often (# iterations) up update spike thresholds (default =

100)

updateEvery How often (# iterations) to update weights (default = 100)

spikeRate Struct with various fields for spike rate tracking

meanWindow Sampling window (# iterations) to use to compute long-term

mean rate of spiking for network monitoring and reporting.
This value has no effect on network learning behavior.

(default = 10000)

lmeanWindow Sampling window (# iterations) to use to compute long-term

mean rate of spiking used by learning rules. Changing this

can alter network behavior. (default = 5000)

instantWindow Sampling window (# iterations) to use for measurement of

instantaneous spike rate. (default = 5)

delayLine Substruct of delay line parameters

len Length of delay (# iterations)

Cell Group internal state variables:

isExternal If the cell group is 'external' then it is a place-holder for copies of

values derived from elsewhere

v 1.02 Page 12

location Array [numCells,2] of (y,x) positions for each cell (optional).

Positions are in unit coordinates in the range (0,1) for a
simulated 2D sheet.

potential Array [numCells,1]. The summed input that is integrated by the

neuron over a exponentially receding time window. This value is
analogous to the membrane voltage potential of a neuron.

spikeThresh Threshold for triggering a spike (default = 1, updated

dynamically).

spikedRecently Array [numCells,1]. Set to 1 when a cell spikes during the

processing of an iteration. From there, the signal decays
exponentially over time. This decaying signal allows target
neurons to estimate how recently a source neuron fired, which is
needed to calculate the Spike Timing Dependent Plasticity
(STDP) response curve.

targetCount Array [numCells,1] indicating the total number of output targets

for each cell. The number of output targets is determined by the

model connectivity, which is calculated in NetModel_Init.

inputBlock Struct array(numInputBlocks) describing the inputs. See Input

Block section below for details.

delayLine Substruct of delay line parameters:

 len Length of delay (# iterations)

 buffer Matrix(numCells, len) of delay holding slots

updateThreshEvery how often (# iterations) to update spike thresholds

updateEvery How often (# iterations) to update weights

spikeRate Struct with various fields for spike rate tracking

meanWindow Sampling window (# iterations) to use for long-term mean

rate of spiking. See CellGroup_Init.

instantWindow Sampling window (# iterations) to use for measurement of

instantaneous spike rate. See CellGroup_Init.

mean Array(numCells,1) the long-term measured mean spike

rate for each cell (a moving average in spikes/timeUnit)

popMean The long-term measured mean spike rate of the cell group

as a population

instant Array(numCells,1) the instantaneous spike rate for each

cell (a short-term moving average in spikes/iteration)

Input Block

The input block describes a set of connections from one cell group (the “source”) to
another. The latter cell group “owns” the input block. The input block primarily contains
a matrix of connection weights from all inputs to all outputs.

The initialization parameters to the input block are specified during model creation as a

substruct of the cg_xxx parameters struct, for example as:
model.cg_xxx.in_yyy.connectionPattern = 'full';

v 1.02 Page 13

The connection wiring between cell groups is performed during model creation according
to wiring rules specified in the input block parameters. By default, all inputs are

connected to all outputs (connectionPattern = ’full’), however various parse

connection patterns are also supported. For example with connectionPattern =

’geolocal’, the (x,y) coordinate assigned to the cells in the input and output cell groups

are used to preferentially connect cells nearby in terms of Euclidean distance. This
wiring method attempts to approximate the connection pattern between cell types
believed to exist on within cortical sheet.

Learning rules (learningRule) include:

'hebian_oja' Oja variant of Hebbian learning

'correlation_measuring' Learning rule used in E-I Net

'foldiak' Decorrelation rule used in SAILnet

'none' No weight updating

Input configuration parameters:

sourceCellGroup The cell group providing the inputs (required)

numInputs Number of inputs per cell (required)

name Name of the input block. Defaults to the name of the source cell

group.

connectionType Determines computational effect; Defaults to source cellType

e.g. 'excitatory', 'inhibitory', ...

connectionPattern The connection pattern to use. (default = 'full')

'full' Full connectivity. If numInputs is supplied, it must equal

sourceCellGroup.numCells. No indirection matrix

(inputIndices) is used for greater speed.

'fullIndirect' Full connectivity, but with the usual indirection matrix (really

just for testing).

'uniform' each target cell is connected randomly to a source

'geolocal' Connect probabilistically to the closest cells according to cell

location.

'geolocalClosest' Connect to the closest cells according to cell location.

'none' uninitialized; the caller will wire later

connectionSigma When using the 'geolocal' method, the standard deviation to

use when determining connection probability. If null is passed in,
a value will be calculated based on the ratio of inputs to source
cells.

noDuplicates If true, duplicate connections (connections between the same

input/output cell pairs) will be discrarded and resampled. (default

= true)

noSelfConnections If true, this input block connects a cell group to itself, and

connections where the input and output cell are the same will be
disallowed. Disallowing self-connections is important for network
stability to prevent self-reinforcing feedback loops and infinitely
scaling connection weights. For fully-connected input blocks,

v 1.02 Page 14

self-connections will be suppressed by clamping the diagonal

weights, weight(i,i), to zero. (default = false)

forceDirect Force all connections to be direct, with missing connections

marked with connection clamping. This is the fastest method for
execution as long as the input reduction is not too great (up to
10:1 reduction?).

learningRule Learning rule to use (default = derive from source cell group).

Possibilities include 'hebbian_oja', 'foldiak', and

'correlation_measuring'. See section above for details.

learningRate Learning rate to apply. The learning rate can be negative to

change the sign of the learning rule. This is later multiplied by

cellGroup.learningRate and model.learningRate to

arrive at a final value. (default = .01)

blockWeight A weighting factor applied to all inputs from this block as a

whole. This can be used to simulate duplicate connections or to

scale learning rule weight ranges. 0 disables connection input,

which can model silent synapses that still learn without effecting

cell activity. (default = 1)

initWeights Method to use for initializing weights (default = 'uniform').

Weights are normalized to unit vector length input to each cell
(unless the weights are initialized to zero). Unconstrained

weights will have a zero mean. 'nonneg' weights will be >= 0.

'uniform' Uniform random values (default)

'gaussian' Gausian distribution, or positive half-gaussian if

constrainWeights = 'nonneg'.

'zero' Initialize all weights to zero.

<scalar value> Weights are initialized to that value

matrix Weight are initialized to the supplied weight matrix

constrainWeights Constraint to apply to weights (default = 'nonneg').

'nonneg' Weights cannot go below zero (default)

'none' No constraint is applied to the weights

clampZero Array(n,1) or logical array(numCells,numInputs) indicating

which weights, if any, to clamp to zero. (default = []). Clamping

weights to zero can be used to simulate partial connectivity.
When a cell group is connected to itself, all self-weights

(weight(i,i) along the diagonal) should often be clamped to

zero to prevent problematic weight change behavior.

Input Block internal state variables:

numSourceInputs Number of inputs to the cell group of this type

numInputs Number of inputs to each cell

clampZero Logical array [numCells, numInputs], or numerical array

[numClamp,1] indicating which weights to clamp to zero.

Clamping a weight to zero treats the connection as non-existent,
allowing partial connectivity to be simulated in a fully-connected
model.

v 1.02 Page 15

inputIndices Array [numCells, numInputs] indicating which input source

this connection (synapse) receives from. If this is [], full

connectivity is assumed and numSourceInputs must equal

numInputs.

weight Array [numCells, numInputs] containing the connection

weights.

dweight Array [numCells, numInputs] containing accumulated weight

changes that have not yet been applied.

spikedRecently Array [numSourceInputs,1] indicating whether the input

neuron spiked recently. 1 if it spiked on the most recent

iteration, and something in the range [0,1) if it spiked earlier.
Value decays with each iteration.

Net Model

Input configuration parameters:

refNumCells A reference number of cells for each cell group. The actual

number of cells for a cell group can then be specified as a
fractional percentage of this number. (Used during model
initialization only)

fpsMax Maximum allowable iteration rate (frames per second). If set, this

will slow down the simulation to a certain maximum speed.

learningRate Learning rate to apply to the model as a whole. If 0, learning is

disabled for the whole model. (default = 1).

lrateScale Scaling factor to make learning rates more human-readable

(default = .001).

simTimeUnitSize Size of simulation time unit in seconds (default = .001 = 1 ms)

simTimeStep Size of discrete simulation time step in simulation time units. The

default interpretation is that each simulation time unit is 1 ms and

the time step is 1. (default = 1)

simMovingAveInput Simulate synaptic neurotransmitter accumulation

simInitPotentials How to initialize cell membrane potentials before network

simulation. Either 'zero' or 'random' (default = 'zero')

simNoReset Reset potentials before each training sample? (default = true)

spikeSize How much does a single spike contribute to a target cell's

potential? (default = 1)

meanRateLearning Use mean-rate learning instead of spike-timing learning? (default

= false)

stdpEnvelopeShape Shape of weighting envelope to use for STDP moving average

calculation

'expDecay_continuous' Exponential decay, using y_ave0 to start

'expDecay' Exponential decay (typical moving average)

'expDecaySymmetric Exponential decay but both forward and backward in time

'gaussian' symmetric gaussian envelope

v 1.02 Page 16

stdpTimeOffset When doing STDP learning (non-mean-rate learning), shift input

moving averages to be one time step earlier in time.

precisionHint Floating point precision to favor, either 'single' or 'double'.

'single' can be up to 25% faster with results that are 99.9%

the same. (default = 'double')

outputCellGroupName Name of cell group that represents the output of the model as a

whole, if any. (default = [])

cgDefaults Parameter struct containing default values to apply to all cell

groups in the model (default = [])

cg_<name> Parameters for cell group with name <name>. For a complete list

if cell group configuration parameters, see Cell Group, above.
These following parameters are a selected subset:

numCells Number of cells in the cell group

cellType The type of cell (e.g. 'excitatory' or 'inhibitory')

refNumInputs The target number of inputs to this cell group. If provided ,

this number is used to calculate the input block input count
when fractional ratios are provided. This parameter provides
a way to experiment with different numbers of total inputs
without changing the synapse type ratios. (optional)

in_<srcName> Describes a set of inputs to this cell group. <srcName> is

the name of the cell group providing the input. The value of
the parameter can simply be a number, in which case it is
taken to be the number of inputs to this cell from the source

cell group. If the number is in the range (0,1) then it is

assumed to be a percentage of cg_xxx.refNumInputs.

For a complete list of input block configuration parameters,
see Input Block, above. These following parameters are a
selected subset:

numInputs If in_<srcName> is a property struct, then numInputs

contains the value of the number of inputs, identical to
the description above.

connectionType Type of connection. Specifying this overrides the default

type determined from the input cell type. (default = input
cell type)

connectionPattern How to wire the source cells to this group. Options

include: 'geolocal', 'uniform', 'full', and

'none'. See CellGroup_AddInput for more details.

learningRule learning rule to use (the default is to derive from source

cell group)

learningRate Learning rate to apply. This is later multiplied by

cellGroup.learningRate and

model.learningRate to arrive at a final value.

(default = .01)

cgDefaults Parameter struct containing default values to apply to all cell

groups

displayTimeUnits Time units to use for interpreting display/print frequencies

'iteration' Iterations

'sample' Learning samples

'simTimeUnit' Simulation time units

v 1.02 Page 17

debugDisplayEvery Number of displayTimeUnits between debug output events.

0 = never. Only used for single-sample linear simulation mode.

(default = 0)

stats Struct of params to configure figures and statistics gathering.

(See NetModel_Stats for details.)

measure Measurements to take. This is a MatLab struct, with each

named substruct describing a specific statistical
measurement to take. See Measurements, below, for
details.

figure Figures to draw. This is a cell array of substructs describing

each figure to draw while the simulation is running. See
Plots and Figures, below, for details.

print Struct of sub-structs describing console print columns

printStatsEvery How often to print a line of statistics to the console. Units

determined by displayTimeUnits. 0 means don't print

statistics. (default = 1000)

updateFiguresEvery How often to update display figures. Units determined by

displayTimeUnits. Value of [] will copy value from

printStatsEvery. 0 means don't show figures. (default =

[])

keepSpikeHistory Retain record of spikes from simulation? Useful for

debugging and charting, but can take up a lot of memory.

History is kept in model.snapshot.spikeHistory.

(default = false)

keepPotentialHistory Retain record of membrane potentials from simulation?

History is kept in model.snapshot.potentialHistory.

(default = false)

numSTASamples Number of spike samples to include in the moving average

window for STA measure calculation. Can be overridden for
each STA measure.

Model internal state variables:

cellGroup Cell array(numCellGroups) of cell group structs. See Cell

Group “internal state variables”, above.

inputBlock Struct array(numInputBlocks) of input block structs. See

Input Block “internal state variables”, above.

snapshot Struct containing temporarily saved information from one "batch"

of simulations; can be deleted at any time to free up memory.

inputData Matrix(numInputs,numSamplesPerBatch,

numIterationsPerSample) of inputData.

spikeHistory Cell array(numCellGroups) of matrix(numCells,

numSamplesPerBatch, numIterationsPerSample)

containing retained spike history for later analysis.

potentialHistory Cell array(numCellGroups) of matrix(numCells,

numSamplesPerBatch, numIterationsPerSample)

containing retained cell potentials for later analysis.

v 1.02 Page 18

Measurements

To help gain insight into the network dynamics, various statistical measurements can be
made and collected while the network is running. The measurements collectively are
indicated with model initialization properties located in:
 model.stats.measure.<measureName>,

where measureName is the name given to a particular statistical measurements. Some

measurements can be displayed in specialized plots, for example the measure 'STA' is

displayed using the plot 'STA', and the measure 'timeSTA' is displayed with the plot

'STA_movie'.

The type of the measure is specified with the measureType property. The following

measurement types are supported:

measureType Type of measurement:

'resError' Residual error from linear reconstruction

'STA' Spike-triggered average

'timeSTA' Spike-triggered average for movies

'correlation' RMS correlation of cells (or between two cell groups)

'spikeRate' Moving average spike rate of a population

'sparseness' Sparsity measures (population, lifetime, and activity

sparseness)

'deltaWeight' Compute moving average of RMS weight change to test for

convergence

'timelineStats' Track metrics over extended time

'custom' User-defined callback function

Each measurement type has its own set of configuration parameters. These are the

supported configuration parameters for each measureType:

'resError':

sourceName Input block for reconstruction, e.g. 'cg_V1e.in_input'

numAvgSamples How many input samples to include in the moving average

window

normalize normalize reconstruction magnitude to unit variance?

(default = true)

timeSeries Assume time-series input (default = false)

sigmaWeighting Gaussian sigma for local (time-series) averaging. Only

applies when timeSeries == true (default = 10)

rmsResErr (out) moving average RMS reconstruction error

'STA':

sourceName Cell group to analyze, e.g. 'cg_V1e'

numAvgSamples Number of spike samples to include in the moving average

window (default = model.stats.numSTASamples)

STA (out) measured spike-triggered average (moving average)

'timeSTA':

v 1.02 Page 19

timeInterval Array(1,2), the time interval of the movie (-/+ # iterations).

(default = [-numInterationsPerSample/2, 0])

numFrames Number of movie frames to collect over timeInterval

STA (out) measured spike-triggered average movie (moving

average)

'correlation':

sourceName A cell group ('cg_xxx') or a cell array of two cell groups

(e.g. {'cg_xxx', 'cg_yyy'} indicating which cells to

analyze for correlation.

rmsCorrelation (out) the measured RMS correlation

'spikeRate':

sourceName Cell group to analyze, e.g. 'cg_V1e'

spikeRate (out) measured spike rate (moving average)

'sparseness':

sourceName Cell group to analyze, e.g. 'cg_V1e'

numAvgSamples How many test samples to include in the moving average

windows

timeSparseness (out) lifetime sparseness (moving average)

popSparseness (out) population sparseness (moving average)

activitySparseness (out) activity sparseness (moving average)

'deltaWeight':

deltaInterval The interval in time units for calculating dW (default = 1000)

windowSize The moving average window for RMS calculation in time

units (default = deltaInterval)

ib(i) Information collected on input block # i (i is arbitrary)

name A human-readable name of this input block, e.g. 'V1e-
>V1i'

cgId Cell group index of this input block

ibId Input block index of this input block within its cell group

srcId Cell group id of the input source

dW The moving average RMS weight change (units = dW /

timeUnit)

cg(i) information collected on cell group # i (i is arbitrary)

name A human-readable name of this cell group, e.g. 'V1e'

cgId Cell group id of this input block

dThresh The moving average RMS threshold change (units =

dThresh / timeUnit)

dW The moving average RMS weight change across all weight

sets (units = dW / timeUnit)

ddW The derivative of dW

dThresh The moving average RMS spike threshold change across all

cell groups (units = dThresh / timeUnit)

ddThresh The derivative of dThresh

v 1.02 Page 20

'timelineStats':

metricExpr The metrics to track (model-specific MatLab expressions)

historySize Number of historical samples to collect before recycling

(default = 1000).

'custom':

measureFn Function pointer of form m = fn(m, model,

spikeHistory) of the measure to calculate.

Plots and Figures

To view what the network is going, various plots and figures are supported which will be
updated periodically while the network simulation is running. These plots can also be
made interactively from the MatLab command console.

To specify a figure that should be drawn periodically, a figure descriptor can be provided
in the following cell array:

model.stats.figure{}

Figured can also be plotted interactively by calling:
 NetModel_Plot(model, figureParams)

For an example of some of the different types of plots and their plotType name, see

Example Plots at the top of this document.

Each figure struct may contain the following subfields:

figureNum Figure number to use. (default, assigned automatically starting at

1001)

title Title to use to label the figure

sourceName A name identifying the signal source for the chart. Examples:

'cg_V1e' or 'cg_V1e.in_V1i'

plotType Type of plot to draw in this figure (see plotType below)

'STA' Spike-triggered average

'STA_movie' Spike-triggered movie

'inputImagePatches' Batch of input training samples (either still image patches

or image patch movie clips)

'weightPatches' Grid of 2D image patch basis functions

'weightMatrix' Image showing 2D weight strengths, with scale

'weightDistribution' Histogram showing distribution of weight values

'weightDistributionAll' Histogram showing weight distributions for all input

blocks

'weightCorrelation' Scatter plot comparing recurrent AB and BA weights

'spikeRateHistogram' Histogram of spike rates across training samples or spike

rates across cells

'populationActivity' Line plot of mean spike rate over time, all cell groups

'connectionDensities' Shows where connections occur geospatially

v 1.02 Page 21

'STAWRatioHistogram' Bar chart showing distribution of STA/weight ratio

'rStdHistogram' Histogram of reconstructed sample standard deviations

'spikeRaster' Raster plot of spikes over time

'spikeRasterAll' Raster plot of spikes over time for all cell groups

'spikeRasterAllImage' Same as 'spikeRasterAll' but with faster image

drawing

'spikeRasterAllMulti' A grid of multiple raster plots

'potential' Timeline plot of the evolving potentials of active cells

'networkDynamics' Plot cell potentials and spike raster for whole network

'timelineStats' Long-term timeline ticker of tracked metrics (e.g.

spikeRate, threshold, ...)

'cellGroupVars' Plot cell group activity metrics

'custom' A user-defined figure drawn via callback function

'composite' A figure composed of other figures

Special fields for particular plot types (plotType in quotes):

'weightPatches':

maxDisplay Max number of patches to display.

combinePlusMinus Subtract second half of weights from first to recreate

receptive fields in factored plus-minus scenario

'STA':

sourceName Cells to use for spike trigger (e.g. 'cg_V1e')

measureName Name of an STA measure to use as source for plot (use only

One of sourceName or measureName)

'STA_movie':

numFrames How many frames to display in the movie (default = 5)

playDuration Duration of clip playback in seconds (default = 1)

minImageSize Minimum image size so it isn't too small to see (default =

300)

'weightDistribution':

sourceName Which weights to display (e.g. 'cg_V1e.in_input')

useLogScale If true, use a log scale on the X (weight size) axis

minWeight If provided, discard all weights with magnitude smaller than
minWeight

numBins If provided, overrides the auto-calculated number of bins

plotStyle either 'line' or 'bar'. (default = 'line')

'weightDistributionAll':

[same properties as 'weightDistribution']

'weightCorrelation'

sourceName Two bi-directed input blocks, e.g. {'cg_V1i.in_V1e',
'cg_V1e.in_V1i'}

'spikeRateHistogram':

v 1.02 Page 22

dimension Which spike rate measurements to use, either

'perSample' or 'perCell'.

numBins Number of bins to use when drawing histogram (optional). If

numBins = 'tabulate', then perform discrete value

tabulation.

'STAWRatioHistogram':

sourceName Which weights to display (e.g. 'cg_V1e.in_input')

measureName which STA measure to use (optional)

'spikeRasterAll':

bgColor Background color for MatLab scatter plot (default = [0 0 0]

= black)

markerSize Area size to use for spike markers (default = 11)

'spikeRasterAllImage':

networkId Which network (sample) to display when for multi-sample

simulations (default = 1)

'potential':

sourceName Which cell group to display (e.g. 'cg_V1e')

networkId Which network / sample to plot (default = 1)

normalize Rescale each cell's membrane potential to be relative to its

spike threshold, so that the cell spikes at potential >= 1.

(default = true)

maxLines How many lines to draw (default = 40)

colormap Colormap to use, from 'help colormap'. 'Lines' and

'Winter' are good. Can also be an explicit RGB table.

'cellColor' will use cell-by-cell colors in the

cellGroup.cellColor field. 'colorRamp' will generate

ramp based on the cell group's displayColor.

absColorRamp does the same thing, but always assigns a

given cell the same color. (default = 'Lines')

cellIds Which cells to plot and in what order (overrides automatic

ranking based on cell activity)

'networkDynamics':

networkId Which network / sample to plot (default = 1)

'timelineStats':

metricExpr A cell array of MatLab expressions to track

colormap Matrix(N,3) of RGB colors to use for lines. (default =

colormap('Lines'))

legendText Cell array of labels for each line plotted

legendLocation Where to place the legend (default = 'SouthWest').

'cellGroupVars':

varNames Cell array(N) of variables to plot. The first variable becomes

the dependent variable on X axis, and all remaining
variables are plotted on the Y axis against the X variable.
(required)

showPDF Draw probability distribution? (default = false)

v 1.02 Page 23

normalize Normalize y values to the mean (default = false unless

multiple lines are drawn)

colormap Colormap to use, which is a matrix(N,3) of RGB values. []

indicates default to colormap('Lines'). (default = [])

legendText Cell array of names for each variable (optional)

lineWidth Line with to use for line plotting (default = 1.5)

fontSize Font size for text (default = 13)

'custom':

figureFn Function pointer of form fig = fn(fig, model,

spikeHistory) to plot into a drawing context that has

already been established.

'composite':

subFigure{} Subfigures (only one level of nesting is allowed)

layoutDims dimensions [rows, cols] for plot arrangement (optional)

Printing

To monitor network dynamics and progress during learning, a line of statistics can be
printed every so often to the console. The values on the line to be printed are specified
as fields of the structure:

model.stats.print.<printName>

Each <printname> substruct must have exactly one of the following subfields:

measureName The name of a measure to use (uses the main metric)

matlabExpr A string containing a MatLab expression to evaluate

builtin A string naming a built-in field to evaluate

'sampleCount' Total number of samples that have been used for training

v 1.02 Page 24

4. Selected Functions

This section describes the API to some of the high-level functions of the neurosim
model.

RunVisionNetworkSimulation

Build and train a spiking circuit model that works on natural images.

Usage:

model = RunVisionNetworkSimulation(params)

model = RunVisionNetworkSimulation(params, model)

Inputs:

params Configuration parameters:

numInputSamples Number of image patch samples to train on (default = 10000)

printSummary Print column headers and time elapsed summary (default =

true)

model Parameters for constructing model. Required if generating a

new model. Ignored if an already-constructed model is
provided as a second parameter.

model An already-constructed model to use. Providing this causes

params.model to be ignored. (optional)

NetModel_Figure

Draw a figure based on model state. See Plots and Figures, above, for details.

Inputs:

model The model (read-only)

figParams The figure specification parameters. See Plots and Figures,

above, for a detailed list of figure properties by plot type. Figure
properties can include:

figureNum Figure number to use (optional)

title Figure title (optional)

Usage:

NetModel_Figure(model, figParams)

NetModel_Figure(model, plotType, param1, value1, param2, value2,

...)

v 1.02 Page 25

NetModel_InitV1eV1i

Initialize an E-I Net network model with excitatory (E) and inhibitory (I) populations

Initialize a basic V1 network circuit model that uses two cell groups:

V1e – Excitatory cells with input from image, V1i, V1e

 V1eV1e connections are disabled by default, except in SAILnet mode)

V1i – Inhibitory cells with input from image, V1i, V1e

 inputV1i connections are disabled by default

The connections from V1eV1e are normally disabled. When enabled, these are
inhibitory connections to match the lateral inhibition model of SAILnet.

A representative subset of parameters are shown here. Please see the MatLab source

file NetModel_InitV1eV1i.m for a complete list of supported parameters and their

defaults. The defaults vary by model subtype.

Usage:

Model = NetModel_InitV1eV1i(params)

Input configuration parameters:

modelSubtype Which variation of the E-I network is desired:

'jneuroscience' Model used in the J. Neuroscience paper (CM rule, STDP)

'SAILnet' SAILnet: Only one neuron layer, F rule

'cm' Use the correlation_measuring rule for all connections

other than inputE (default)

'ho_fb' Use the HO learning rule for EI connections and the

foldiak_bounded_exp rule for inhibitory connections.

learningRate Learning rate to apply to the model as a whole. If 0, learning is

disabled for the whole model. (default = 1).

stdpEnvelopeShape How to average spikes for input to learning; ignored if

meanRateLearning = true. (default =

'expDecay_continuous')

'expDecay_continuous' Use exponential moving average

'expDecay_continuous_all' Use exponential moving average, including for

static inputs

'gaussian' Use a temporal gaussian weighting

cgDefaults Default parameters for all cell groups (see Cell Group for all

available parameters)

cg_V1e Cell group parameters for the excitatory (E) cells

numCells Number of E cells to use in the circuit model

initSpikeThresh Value to initialize E spike thresholds to

threshAdaptRate Learning rate for E cell spike thresholds

in_input Parameters for the imageE connections (see Input Block)

in_V1i Parameters for the IE connections (see Input Block for

full list)

learningRate Learning rate for IE connections

v 1.02 Page 26

in_V1e Parameters for the EE connections, SAILnet model only

(see Input Block for full list)

cg_V1i Cell group parameters for the inhibitory (I) cells

numCells Number of I cells to use in the circuit model

initSpikeThresh Value to initialize I spike thresholds to

threshAdaptRate Learning rate for I cell spike thresholds

in_V1e Parameters for the EI connections (see Input Block for

full list)

learningRate Learning rate for EI connections

in_V1i Parameters for the II connections (see Input Block for full

list)

learningRate Learning rate for II connections

 [see Model, CellGroup, and Input Block sections, above, for more model parameters]

Output:

model The initialized network model

NetModel_InitEINet

Initialize an E-I Net network model with excitatory (E) and inhibitory (I) populations. This

is a simplified model from V1eV1i above. The cell group names are “E” and “I” instead of

“V1e” and “V1i”. Otherwise all the model parameters from NetModel_InitV1eV1i apply

here also.

NetModel_Init

Initialize a spiking network simulation model.

Self-connections:

If a cell group is connected to itself, the input block parameter

'noSelfConnections' will be set to true by default. For fully connected

networks, the diagonal weights, weight(i,i), will be clamped to zero.

Usage:

model = NetModel_Init(params)

NetModel_UpdateFast

Execute many time steps of a spiking network simulation. For increased learning speed,
several networks can be simulated in parallel but with different inputs. This allows the

v 1.02 Page 27

optimized matrix math routines to execute the highest floating point operations per
second.

This optimized routine performs the same function as NetModel_Update but up to 40

times faster. It achieves additional speed in the following way:

 Performs the full network simulation in local variables

 Performs many network iterations in a single call (optional)

 Simulates multiple networks simultaneously in parallel (optional)

 Can use average firing rates rather than spike-timing plasticity (optional)

 Calculates weight updates in batch using matrix multiply

The following constants define the size of the simulation:

numNetworks How many identical networks (but with different inputs and

internal state) to simulate in parallel. When 100 input samples
are processed simultaneously, 100 clones of the full network are
created and simulated. This allows MatLab to do substantial (up
to 40x) optimizations with matrix math and multi-core parallel
computation.

numIterations How many simulation time steps to iterate through

Each model simulated has the following basic structure:

numCellGroups The number of separate neuron populations in the model. Each

neuron population has its own behavior and connectivity

parameters. For each CellGroup:

numCells The number of identical neurons in that cell group

numInputBlocks How many input types (from other cell groups) are receive.

For each InputBlock:

numInputs How many inputs of that type does each cell receive

weight matrix of connection weights from all input cells to all

output cells.

dweight Accumulated (but not applied) weight matrix changes

If the initialState input parameter is provided, then the network state contained in

initialState will be used instead of the state contained in the model's cell groups.

Each state field (u, y, y_ave) can optionally contain a matrix of multiple columns, in

which case each column represents a separate parallel network to be simulated in
parallel and in batch for faster performance. Any variables or cell array values that are

null or missing will be assumed to be initialized to zero.

Usage:

Model = NetModel_UpdateFast(model, numIterations)

Model = NetModel_UpdateFast(model, numIterations, initialState)

[model, finalState] = NetModel_UpdateFast(model, numIterations,

initialState)

Inputs:

model The simulation model state

numIterations The number of simulation iterations to execute

v 1.02 Page 28

initialState Struct containing the initial cell group state for batch processing.

Any variables or values missing will be filled in with zeros. If the

initialState struct is not provided, the state in the cell

groups will be used instead. (optional)

u Cell array(numCellGroups,1) of matrix(numCells,

numNetworks) representing initial cell potentials. (optional)

y cell array(numCellGroups,1) of Matrix(numCells,

numNetworks) representing the last spike output of the

cells. Alternatively, y can be a matrix(numCells,

numNetworks, numIterations), in which case y

represents the input arriving from an external cell group to
use for each iteration. (optional)

y_ave Cell array(numCellGroups,1) of matrix(numCells,

numNetworks) representing the most recent spike rate

moving average output of the cells. (optional)

Output:

model The updated simulation model state

finalState The final state of the network (optional)

u Matrix(numCells,numNetworks): ending cell potentials

y Matrix(numCells,numNetworks): last spike status

y_ave Matrix(numCells,numNetworks): last iteration of running

average

y_history Matrix(numCells, numNetworks, numIterations): spike

history for all iterations and all networks

