Neurosim — Technical Overview
4/2013

Contents:
L. INErOAUCTION. ... 1
2. Model Configurationooeuuiiiiiii e 3
EXample PIOtS........oooiiiiei e 3
Running a Simulation — E-I Net..............uuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeens 5
Running a Simulation — SAILNETuiviiiiiiiiiiiiiiiieiiieiiiieeiinens 7
Inspecting Model Parameterscccoeveeeviiieeiiciiie e 7
3. Object Types and Parameterscccccvvvviiiiiiiiiiiiiiiiiiiiieeeeeeeee 10
Cell GIOUP ...t e 10
INPUE BIOCK ... e 12
N0 1Y o o = 15
MEASUIEIMENTS ... ittt ettt et eaa s 18
Plots and FIQUIES..........oiiiiiiiieccen e 20
PERINTING oottt n e 23
v Y= Tox (= To I 0 [ox 1 o] o R 24
RUNVisioNNetworkSimulation.................eeeeeueerrerieeieieeiieeenee. 24
NEtMOAEl_FIQUIEeeiiieiiiiiiiieiiiieeieiie e 24
NetModel _INItVIEV Lciii i 25
NetModel INItEINEL........cccooiiiiieecee e 26
=10V ToTo 1= I o | 26
NetModel_UpdateFast.............uuuueiiiiiiiiiiiiiiiiiiiiiiiiiiieiieiieneieennenes 26

1. Introduction

Paul King, Redwood Center for Theoretical Neuroscience, UC Berkeley
Contact: paul@pking.org Website: www.pking.org/research/EINet

E-I Net is a spiking neural network simulation with excitatory and inhibitory neurons that
can learn a sparse code from input data. When trained on whitened natural images, E-I
Net learns a distributed representation of Gabor-like receptive fields as found in the

primary visual cortex (area V1).

v 1.02

Page 1

mailto:paul@pking.org
http://www.pking.org/research

The results of the E-I Net simulation are presented in the following paper:

King PD, Zylberberg J, DeWeese MR (2013). Inhibitory interneurons
decorrelate excitatory cells to drive sparse code formation in a spiking
model of V1. J Neuroscience.

This sparse code spiking model is based on previous work by Zylberberg et al. (2011):

Zylberberg J, Murphy JT, DeWeese MR (2011) A sparse coding model with
synaptically local plasticity and spiking neurons can account for the
diverse shapes of V1 simple cell receptive fields. PLoS Computational
Biology.

The MatLab source code and neural network simulator provided here includes all files
needed to generate the results of King et al. (2013). Included and describe here is the
Neurosim spiking neural model simulator which is written in MatLab and can be found in
the "neurosim” directory of this software distribution.

The "sample data" directory in this distribution contains pregenerated simulation results
saved as MatLab ".mat" files. This data can be regenerated by running the scripts
named "trainl ..."through"train4 ...". Seethe README.txt file for details.

Neurosim is a spiking neural network simulator for modeling neural circuits composed of
populations of cells with identical properties (“cell groups”). E-I Net uses two cell groups:
an excitatory population named "vie" and an inhibitory population named "v1i". There is
also an "external" pseudo-Cell-Group named "input" that represents the whitened
image input to the simulation.

Cell groups are connected to each other with input-side connection descriptors (“input
blocks"). Each input block describes the characteristics of the connections from an
output cell group to an input cell group, including properties such as the learning rule
and learning rate. Each input block contains a weight matrix that is updated during
learning.

All cell groups comprising the circuit to be simulated are collected in a network model
structure (NetModel).

The simulator allows arbitrary circuit structures to be specified as a configuration input to
the simulation using hierarchically organized MatLab "struct" objects. Model template
files with sets of default structure properties can be found in the files with names like
NetModel InitXxxx.m.

The function RunvisionNetworkSimulation () takes as input a hierarchical set of

properties describing the network to be simulated. It constructs the network and runs the
simulation using whitened images as training data.

v 1.02 Page 2

2. Model Configuration

Neurosim models a spiking network composed of “cell groups” — populations of neurons
with identical behavior — which are connected to each other via input blocks. An input
block is a matrix of connections in which every cell from a source cell group connects to
every cell in a destination cell group. Each connection has its own connection weight.
Partial connectivity can be simulated by clamping certain connection weights to zero or
by an indirect mapping.

The E-1 Net model can be conceptually represented as follows:

image—| E —

T
I
O

Within the spiking network simulator, E-I Net is represented this way:

Net Model
> | Cell Group “input” e Stats
J Measures

cell G "n1e” Input Block “input” @

: kel = Input Block “V1i” @

T Figures

cell G w1 Input Block “V1e” O—J

i I f Input Block “V1i” 0——| Print Columns

A

The model is hierarchically organized, with a model composed of cell groups, which is
composed of input blocks.

Example Plots

Several real-time network plots are available which will be updated periodically while the
simulation is running. 23 different plot types are supported, 6 of which are shown below
along with their plotType name.

v 1.02 Page 3

Selected plot types:

0
50
O
= o
o =
e o
o
100
180 .
L L L] L]
10 20 30 40 50 10 20 30 40 50
Time {iteration # tirme (iteration #)
. . 1
'spikeRasterAllImage’ 'spikeRasterAll
vie cells (18 active, 40 spikes) 002 Wieight Distribution (input -> 1)

ﬁQ,»JLt oot Aﬂ//fwm\\\lmgi
a . ‘ . . .

.) 8 06 04 D2 0 0z 0.4 0.6
40 a0 Weight Distribution (1 -> %1e)
0.4

norm potential

tirme (iteration #)

Vlicells (9 active, 18 spikes) 0.2 L 4
ar
A‘ M M u -
L 0 1 2 3 4 5 B

narm potential
o

“ - Weight Distribution (v1e -= %1i)
I 10 20 20 a0 50 ué
time (iteration #) ' L‘
iy e e e o5 1 2 3 4 5 B
T - : - . :.] Waight Distribution (%10 -> %10)
é WID 1‘5 Qb 2‘5 Sb 3‘5 4‘0 4‘5 a0 i} K_’\’_-\——';' . .
time (iteration #) o 2 4 5 g 10
'networkDynamics' 'weightDistributionAll'
o T Pl L
o4 NAROAEZASERE
izt H:ll:-h’i:h'...lkih=!i
ol ANFEESNONal=
N A 22 O B AL
| HERTLLTNSNE
005 HuRAHEERPAET
o CEUZZNEER LN
o WACUTSPRNNA
: =e=LNC o NENH

o —
0 s 0 18 20 2 a0 3 M0 2 a0
ThaFili==TRES

'populationActivity' 'STA', 'weightPatches'

v1.02 Page 4

Running a Simulation — E-I Net

The following MatLab code shows an example simulation experiment (taken from the file
demol EINet.m):

simParams = struct():;

simParams.numInputSamples = 50000;

simParams.model.modelType = 'Vlevli';

simParams.model.inputDims = [8,8];

simParams.model.numSamplesPerBatch = 100;

simParams.model.numIterationsPerSample = 50;

simParams.model.meanRatelearning = true;

simParams.model.learningRate = .5;

simParams.model.cg Vle.numCells = 121;

simParams.model.cg V1i.numCells = 36;

simParams.model.cg Vle.in Vli.learningRate = .7;

simParams.model.autoFigures = {'STA E', 'STA I', 'weightDist',
'spikeRaster', 'networkDynamics'};

simParams.model.stats.printStatsEvery = 2000;

randreset (); model = RunVisionNetworkSimulation (simParams) ;

In the above simulation, a hierarchical set of configuration parameters have been
initialized to describe the simulation. Each line is explained in sequence.

simParams.numInputSamples = 50000;

Run the simulation for the duration of 50,000 training samples. Each input sample will be
an image patch drawn from a random region of a random image in the input image set
(zMacGESs.MAT by default).

simParams.model.modelType = 'Vlevli';

The model substruct describes everything about the model to be simulated. The
mode1Type provides the name of a preconfigured set of model parameters to load. The
modelType='vlievli' is “hard-wired” to initialize the E-I Net model default parameters
by executing the MATLAB file NetModel Initvlevli.m, which contains all the default
parameters.

simParams.model.inputDims = [8,8];
Run the simulation using 8x8 pixel input image patches.

simParams.model.numSamplesPerBatch = 100;

On each training batch, run 100 networks in parallel. This is a good number for speeding
up the math considerably.

simParams.model.numIterationsPerSample = 50;

Run each image patch simulation for 20 time step iterations.

simParams.model.meanRatelearning = true;

v 1.02 Page 5

Use mean rate learning. If meanRateLearning=true, the learning rules will be applied
on the average spike rate across the training sample, as is done in the SAlLnet model. If
meanRateLearning=false, then spike-timing dependent plasticity (STDP) is used in
which the learning rate is applied on each time step to the instantaneous average spike
rate at that moment in time. meanRateLearning=true runs faster.

simParams.model.learningRate = .5;

Use a lightly lower global learning rate than the default, which is 1. The true learning rate
for a particular connection is the multiplicative combination of the global learning rate,
the cell-group-level learning rate, and the input-block-level learning rate.

121;
36;

simParams.model.cg Vle.numCells
simParams.model.cg V1i.numCells

Create a network with 121 E cells (vie) and 36 | cells (vi1i).

simParams.model.cg Vle.in Vli.learningRate = .7;

Parameters can also be set at the level of the input block. This example parameter sets
the learning rate for the 'vii' input block within the 'vie' cell group. This is the input
block representing the incoming connections from the | cells (the 'vii' cell group). Any
parameter not specifically declared reverts to a default, and numerous defaults are
defined in NetModel_InitV1eV1i.m.

simParams.model.autoFigures = {'STA E', 'STA I', 'weightDist',
'spikeRaster', 'networkDynamics'};

The vievii model has several predefined real-time figures. These figures will be
updated periodically as the learning simulation progresses. The predefined figures
indicated here are the spike-triggered average image patch of the E cells (*sTa £') and
I cells ("sTa 1), the statistical distributions of all connection weights for all input blocks
('weightDist'), the spike raster plot using a fast-drawing line style (' spikeRaster"'),
and a plot showing the network dynamics of the active (spiking) cells
("networkDynamics'). These last two plots are specific to only a single simulation run,
and by default, the first run of the most recent batch is displayed.

simParams.model.stats.printStatsEvery = 2000;

A line of statistics will be printed summarizing the state of the network every so often.
This line says to print the statistics after every 2,000 input samples (or 20 batches,
because the batch size is 100). This interval is also used for updating the figures defined
above.

randreset (); model = RunVisionNetworkSimulation (simParams) ;

This last line runs the actual simulation. The first statement resets the random number
generator, which is optional but convenient for getting repeatable results. The second
statement runs the simulation on a model defined with the previously discussed
parameters. After the simulation completes, the state of the model is returned in model.

model = RunVisionNetworkSimulation ({'numInputSamples',10000}, model);

v 1.02 Page 6

This will run the simulation for an additional 10,000 samples. simpParams has been
replaced with the line { 'numInputSamples', 10000}, which will set just the one
parameter numInputSamples., and the additional second parameter, model, has been
passed in to indicate that the simulation should pick up from the current model state.
This approach to simulation allows different models to be stopped and started and
compared. It is also possible to modify the parameters of the model in mid-simulation
this way, for example to change the learning rates or enable or disable a type of cell in
the circuit or a connection input block.

Running a Simulation — SAILnet

The following MatLab code runs a simulation of SAlLnet (Zylberberg et al., 2011):

simParams = struct();

simParams.numInputSamples = 50000;

simParams.model .modelType = 'VlevVli';

simParams.model.modelSubtype = 'SAILnet';

simParams.model.cg Vle.numCells = 121;

simParams.model.autoFigures = {'STA E', 'weightDist', 'networkDynamics'};
simParams.model.stats.printStatsEvery = 2000;

randreset (); model = RunVisionNetworkSimulation (simParams) ;

This script invokes the 'satinet' subtype of the 'vievii' model. This subtype (see
NetModel InitVleVli.m for details) includes the same neuron populations as E-l Net
except that the inhibitory neurons have been disabled and the learning rules have been
changed to match the SAlLnet model.

Inspecting Model Parameters

The parameters actually assigned to a model, as well as its full structure and current
simulation state can be inspected by displaying the MatLab model struct. Do to this,
type “model” at the MatLab command line. For example, after running demol EINet (the
first example above), you can type:

>> model
model =
fpsMax: 0
learningRate: 0.5000
lrateScale: 0.0100
simTimeUnitSize: 0.0100
simTimeStep: 0.1000
simMovingAveInput: O
simInitPotentials: 'zero'

simNoReset: 0
numSamplesPerBatch: 100
numIterationsPerSample: 50
spikeSize: 1
meanRatelLearning: 1
stdpEnvelopeShape: 'expDecay continuous'

v 1.02 Page 7

stdpTimeOffset: O
precisionHint: 'double'
outputCellGroupName: 'Vle'
refNumCells: []
cgDefaults: [1x1 struct]
displayTimeUnits: 'sample'
debugDisplayEvery: 0
stats: [1xl struct]
modelType: 'VleV1i'
modelSubtype: 'cm'
inputDims: [8 8]
inputPreprocess: [1x1l struct]
inputScale: 0.2000
simMethod: 'cellgroupFastBatch'
learningRateUnits: 'perl00Samples'
autoStats: {'weights'}
autoFigures: {'STA E' 'STA I' 'weightDist'
'spikeRaster' 'networkDynamics'}
cg_input: [1x1l struct]
cg Vle: [1x1l struct]
cg V1i: [1x1l struct]
autoAnneal: [1x1l struct]
numTimeUnitsPerSample: 5
initParams: [1lxl struct]
cellGroup: {[1lxl struct] [1x1 struct]
displayTimeScale: 50
debugDisplayWait: O
outputCellGroupId: 2
snapshot: [1xl struct]

The fully populated model parameters and defaults are displayed. The three cell groups
are shown as substructs under cellGroup:

For example, the E cells are cell group #2, here:

>> model.cellGroup{2}

ans =
name: 'Vle'
numCells: 121
cellType: 'excitatory'
isExternal: O
displayColor: [0 1 0]
defLearningRule: []
defForceDirect: 1
location: [121x2 double]
potential: [121x1 double]
spikeThresh: [121x1 double]
dspikeThresh: [121x1 double]
spikedRecently: [121x1 double]
causalFeedback: []
targetCount: [121x1 double]
inputBlock: [1x3 struct]
membraneTC: 0.9491

spikeDecayRate: 2

v 1.02

[1x1 struct]}

learningRate:
targetSpikeRate:
threshAdaptRate:
updateThreshEvery:
updateThreshWait:
updateEvery:
updateWait:
rescaleEvery:
rescaleWait:
spikeRate:

1
0.0500
1

5000

0

5000

0
0
0
[1x1 struct]

The I=>E connections are the third input block:

>> model.cellGroup{2}.

ans =

connectionType:
numSourcelnputs:
name:

srcld:
numInputs:
blockWeight:
learningRule:
learningRate:
constrainWeights:
clampZero:
inputIndices:
spikedRecently:
spikeRate:
causalFeedback:
weight:

dweight:

v 1.02

inputBlock (3)

'inhibitory'

36

'Vii'!

3

36

1

'correlation measuring'
0.7000

'nonneg’

[]

[]

[36x1 double]
[1x1 struct]
[]

[121x36 double]
[121x36 double]

Page 9

3. Object Types and Parameters

The sections below explain the properties that can be set on each object type.

Cell Group

Cell groups are the basic unit of computation in the model and correspond to groups of
similarly-typed neurons in biology. A cell group is a population of cells which function
identically and serve a consistent role in a statistically regular circuit.

Inputs to the cell group are organized as a set of input blocks. Each input block is a set
of inputs that are treated in a consistent way, for example excitatory, inhibitory, or
modulatory. Each input block might correspond to a unigue neurotransmitter, to a
particular connection type (apical vs. distal), or to a particular connection source (L2/3
cells vs. L5 or L6 cells).

The input blocks are connection points in a canonical circuit which are repeated in a
statistically regular fashion across all the cells of the cell group. Each cell will have the
same number of inputs of each type as all other cells in the cell group.

Connection types (connectionType, alsO cellType) include:

'excitatory' Input spike increases cell potential by weighted spikeSize

"inhibitory' Input spike decreases cell potential by weighted spikeSize

'continuous' Input value is integrated as a continuous input over
simulation time step interval

'disabled’ The connection is ignored

Learning rate:
The learning rate that is applied to the connections in a particular input block is the product of

the following:
model.learningRate Global learning rate
model.lrateScale Global scale factor for learning (to make learning rates

more human readable, and to normalize across
simulation time unit changes)

cellgroup.learningRate Cell group specific learning rate
inputBlock.learningRate Input block specific learning rate
Setting any of these to zero will disable learning at that level.

Cell Group initialization parameters (params):
numCells Number of computational units (neurons) in this group

name Name of this cell group, used to refer to the cell group when
specifying connections.

cellType Cell type (default = 'excitatory'). This is used to select the
appropriate signal processing and weight update rule.

v 1.02 Page 10

'excitatory' Input has a positive effect on potential
'"inhibitory' Input has a negative effect on potential
'disabled' Cell group is ignored in all calculations
location Method for allocating cell location. (default= 'tile2D")
'uniform2D' Assign each cell two random coordinates in the range (0,1)
'tile2D' Evenly tile the 2D unit square
matrix If a numeric matrix(numCel1s,2) is provided, use those
locations
deflLearningRule Default learning rule for outputs from this cell group. Only used
during wiring phase. (default = [])
defForceDirect Whether or not to use direct connections by default (only used
during wiring phase)
displayColor RGB color for graphs and plots (default= [1 1 1] = white)
membraneTC Membrane time constant determining potential decay rate in time
units (default = 10)
learningRate Learning rate to apply to all connection weights in the cell group.
Suggested values are between 0 and 1, where 0 = no weight
updates and 1 = recommended 'fast' update rate. Spike
threshold updates are not affected (see threshAdaptRate).
(default = 1).
initSpikeThresh Initial threshold for spiking (default = 1)
threshAdaptRate Learning rate to apply to spike thresholds; weights are not
affected
targetSpikeRate Target spike rate (spikes/interation) for spike rate autoranging. 0
disables autoranging. (default = 0)
updateThreshEvery How often (# iterations) up update spike thresholds (default =
100)
updateEvery How often (# iterations) to update weights (default = 100)
spikeRate Struct with various fields for spike rate tracking
meanWindow Sampling window (# iterations) to use to compute long-term
mean rate of spiking for network monitoring and reporting.
This value has no effect on network learning behavior.
(default =10000)
lmeanWindow Sampling window (# iterations) to use to compute long-term
mean rate of spiking used by learning rules. Changing this
can alter network behavior. (default = 5000)
instantWindow Sampling window (# iterations) to use for measurement of
instantaneous spike rate. (default = 5)
delayLine Substruct of delay line parameters
len Length of delay (# iterations)

Cell Group internal state variables:

isExternal If the cell group is 'external’ then it is a place-holder for copies of

values derived from elsewhere

v 1.02 Page 11

location Array [numCells,2] of (y,x) positions for each cell (optional).
Positions are in unit coordinates in the range (0,1) for a
simulated 2D sheet.
potential Array [numCells,1]. The summed input that is integrated by the
neuron over a exponentially receding time window. This value is
analogous to the membrane voltage potential of a neuron.
spikeThresh Threshold for triggering a spike (default = 1, updated
dynamically).
spikedRecently Array [numCells,1]. Setto 1 when a cell spikes during the
processing of an iteration. From there, the signal decays
exponentially over time. This decaying signal allows target
neurons to estimate how recently a source neuron fired, which is
needed to calculate the Spike Timing Dependent Plasticity
(STDP) response curve.
targetCount Array [numCel1s,1] indicating the total number of output targets
for each cell. The number of output targets is determined by the
model connectivity, which is calculated in NetModel Init.
inputBlock Struct array(numInputBlocks) describing the inputs. See Input
Block section below for details.
delayLine Substruct of delay line parameters:
len Length of delay (# iterations)
buffer Matrix(numCel1ls, len) of delay holding slots
updateThreshEvery how often (# iterations) to update spike thresholds
updateEvery How often (# iterations) to update weights
spikeRate Struct with various fields for spike rate tracking
meanWindow Sampling window (# iterations) to use for long-term mean
rate of spiking. See CellGroup Init.
instantWindow Sampling window (# iterations) to use for measurement of
instantaneous spike rate. See CellGroup Init.
mean Array(numCel1ls,1) the long-term measured mean spike
rate for each cell (a moving average in spikes/timeUnit)
popMean The long-term measured mean spike rate of the cell group
as a population
instant Array(numCel1ls,1) the instantaneous spike rate for each
cell (a short-term moving average in spikes/iteration)
Input Block

The input block describes a set of connections from one cell group (the “source”) to
another. The latter cell group “owns” the input block. The input block primarily contains

a matrix of connection weights from all inputs to all outputs.

The initialization parameters to the input block are specified during model creation as a

substruct of the cg xxx parameters struct, for example as:

model.cg xxx.in yyy.connectionPattern = 'full';

v 1.02

The connection wiring between cell groups is performed during model creation according
to wiring rules specified in the input block parameters. By default, all inputs are
connected to all outputs (connectionPattern = ’full’), however various parse
connection patterns are also supported. For example with connectionPattern =
"geolocal’, the (X,y) coordinate assigned to the cells in the input and output cell groups
are used to preferentially connect cells nearby in terms of Euclidean distance. This
wiring method attempts to approximate the connection pattern between cell types
believed to exist on within cortical sheet.

Learning rules (1earningRule) include:
'hebian oja' Oja variant of Hebbian learning
'correlation measuring' Learning rule used in E-l Net
'foldiak' Decorrelation rule used in SAlLnet
'none' No weight updating

Input configuration parameters:

sourceCellGroup The cell group providing the inputs (required)

numInputs Number of inputs per cell (required)

name Name of the input block. Defaults to the name of the source cell
group.

connectionType Determines computational effect; Defaults to source cel1Type
e.g. 'excitatory', '"inhibitory', ..

connectionPattern The connection pattern to use. (default = ' full")

'full!' Full connectivity. If numInputs is supplied, it must equal

sourceCellGroup.numCells. No indirection matrix
(inputIndices) is used for greater speed.

'fullIndirect' Full connectivity, but with the usual indirection matrix (really
just for testing).

'uniform’ each target cell is connected randomly to a source

'geolocal' Connect probabilistically to the closest cells according to cell
location.

'geolocalClosest' Connect to the closest cells according to cell location.

'none' uninitialized; the caller will wire later

connectionSigma When using the "geolocal' method, the standard deviation to

use when determining connection probability. If null is passed in,
a value will be calculated based on the ratio of inputs to source

cells.

noDuplicates If true, duplicate connections (connections between the same
input/output cell pairs) will be discrarded and resampled. (default
= true)

noSelfConnections If true, this input block connects a cell group to itself, and

connections where the input and output cell are the same will be
disallowed. Disallowing self-connections is important for network
stability to prevent self-reinforcing feedback loops and infinitely
scaling connection weights. For fully-connected input blocks,

v 1.02 Page 13

self-connections will be suppressed by clamping the diagonal
weights, weight (i, 1), to zero. (default = false)

forceDirect Force all connections to be direct, with missing connections
marked with connection clamping. This is the fastest method for
execution as long as the input reduction is not too great (up to
10:1 reduction?).

learningRule Learning rule to use (default = derive from source cell group).
Possibilities include 'hebbian oja', 'foldiak', and
'correlation measuring'. See section above for details.

learningRate Learning rate to apply. The learning rate can be negative to
change the sign of the learning rule. This is later multiplied by
cellGroup.learningRate and model.learningRate to
arrive at a final value. (default=.01)

blockWeight A weighting factor applied to all inputs from this block as a
whole. This can be used to simulate duplicate connections or to
scale learning rule weight ranges. 0 disables connection input,
which can model silent synapses that still learn without effecting
cell activity. (default = 1)

initWeights Method to use for initializing weights (default = "uniform"').
Weights are normalized to unit vector length input to each cell
(unless the weights are initialized to zero). Unconstrained
weights will have a zero mean. 'nonneg' weights will be >= 0.

'uniform' Uniform random values (default)
'gaussian' Gausian distribution, or positive half-gaussian if
constrainWeights = 'nonneg'.
'zero' Initialize all weights to zero.
<scalar value> Weights are initialized to that value
matrix Weight are initialized to the supplied weight matrix
constrainWeights Constraint to apply to weights (default = 'nonneg').
'nonneg' Weights cannot go below zero (default)
'none' No constraint is applied to the weights
clampZero Array(n, 1) or logical array(numCel1s,numInputs) indicating
which weights, if any, to clamp to zero. (default = []). Clamping

weights to zero can be used to simulate partial connectivity.
When a cell group is connected to itself, all self-weights
(weight (i, i) along the diagonal) should often be clamped to
zero to prevent problematic weight change behavior.

Input Block internal state variables:

numSourcelInputs Number of inputs to the cell group of this type
numInputs Number of inputs to each cell
clampZero Logical array [numCel1ls, numInputs], or numerical array

[numClamp,1] indicating which weights to clamp to zero.
Clamping a weight to zero treats the connection as non-existent,
allowing partial connectivity to be simulated in a fully-connected
model.

v 1.02 Page 14

inputIndices

weight

dweight

spikedRecently

Net Model

refNumCells

fpsMax

learningRate

lrateScale

simTimeUnitSize

simTimeStep

simMovingAveInput

simInitPotentials

simNoReset

spikeSize

meanRatelearning

stdpEnvelopeShape

Array [numCells, numInputs] indicating which input source
this connection (synapse) receives from. If thisis [], full
connectivity is assumed and numSourceInputs must equal
numInputs.

Array [numCells, numInputs] containing the connection
weights.

Array [numCells, numInputs] containing accumulated weight
changes that have not yet been applied.

Array [numSourceInputs,1]indicating whether the input
neuron spiked recently. 1 if it spiked on the most recent
iteration, and something in the range [0,1) if it spiked earlier.
Value decays with each iteration.

Input configuration parameters:

A reference number of cells for each cell group. The actual
number of cells for a cell group can then be specified as a
fractional percentage of this number. (Used during model
initialization only)

Maximum allowable iteration rate (frames per second). If set, this
will slow down the simulation to a certain maximum speed.

Learning rate to apply to the model as a whole. If 0, learning is
disabled for the whole model. (default = 1).

Scaling factor to make learning rates more human-readable
(default = .001).

Size of simulation time unit in seconds (default = .001 =1 ms)

Size of discrete simulation time step in simulation time units. The
default interpretation is that each simulation time unit is 1 ms and
the time step is 1. (default = 1)

Simulate synaptic neurotransmitter accumulation

How to initialize cell membrane potentials before network
simulation. Either 'zero' or 'random' (default = 'zero"')

Reset potentials before each training sample? (default = true)

How much does a single spike contribute to a target cell's
potential? (default = 1)

Use mean-rate learning instead of spike-timing learning? (default
= false)

Shape of weighting envelope to use for STDP moving average
calculation

'expDecay continuous' Exponential decay, using y ave0 to start

'expDecay'’

'expDecaySymmetric

'gaussian'

v 1.02

Exponential decay (typical moving average)
Exponential decay but both forward and backward in time
symmetric gaussian envelope

Page 15

stdpTimeOffset

precisionHint

outputCellGroupName

cgDefaults

cg <name>

numCells
cellType

refNumInputs

in <srcName>

When doing STDP learning (non-mean-rate learning), shift input
moving averages to be one time step earlier in time.

Floating point precision to favor, either 'single' or 'double’.
'single' can be up to 25% faster with results that are 99.9%
the same. (default = 'double"')

Name of cell group that represents the output of the model as a
whole, if any. (default = [])

Parameter struct containing default values to apply to all cell
groups in the model (default = [1)

Parameters for cell group with name <name>. For a complete list
if cell group configuration parameters, see Cell Group, above.
These following parameters are a selected subset:

Number of cells in the cell group
The type of cell (e.g. 'excitatory' or 'inhibitory"')

The target number of inputs to this cell group. If provided ,
this number is used to calculate the input block input count
when fractional ratios are provided. This parameter provides
a way to experiment with different numbers of total inputs
without changing the synapse type ratios. (optional)
Describes a set of inputs to this cell group. <srcName> is
the name of the cell group providing the input. The value of
the parameter can simply be a number, in which case it is
taken to be the number of inputs to this cell from the source
cell group. If the number is in the range (0, 1) thenitis
assumed to be a percentage of cg xxx.refNumInputs.
For a complete list of input block configuration parameters,
see Input Block, above. These following parameters are a
selected subset:

numInputs If in <srcName> is a property struct, then numInputs
contains the value of the number of inputs, identical to
the description above.
connectionType Type of connection. Specifying this overrides the default
type determined from the input cell type. (default = input
cell type)
connectionPattern How to wire the source cells to this group. Options
include: 'geolocal', "uniform', "full', and
'none'. See CellGroup AddInput for more details.
learningRule learning rule to use (the default is to derive from source
cell group)
learningRate Learning rate to apply. This is later multiplied by
cellGroup.learningRate and
model.learningRate to arrive at a final value.
(default = .01)
cgDefaults Parameter struct containing default values to apply to all cell
groups
displayTimeUnits Time units to use for interpreting display/print frequencies
'iteration' Iterations
'sample' Learning samples
'simTimeUnit' Simulation time units

v 1.02

Page 16

debugDisplayEvery

stats

Number of displayTimeUnits between debug output events.

0 = never. Only used for single-sample linear simulation mode.
(default = 0)

Struct of params to configure figures and statistics gathering.

(See NetModel Stats for details.)

measure

figure

print
printStatsEvery

updateFiguresEvery

keepSpikeHistory

keepPotentialHistory

numSTASamples

Model internal state variables:

Measurements to take. This is a MatLab struct, with each
named substruct describing a specific statistical
measurement to take. See Measurements, below, for
details.

Figures to draw. This is a cell array of substructs describing
each figure to draw while the simulation is running. See
Plots and Figures, below, for details.

Struct of sub-structs describing console print columns

How often to print a line of statistics to the console. Units
determined by displayTimeUnits. 0 means don't print
statistics. (default =1000)

How often to update display figures. Units determined by
displayTimeUnits. Value of [] will copy value from
printStatsEvery. 0 means don't show figures. (default =
[1)

Retain record of spikes from simulation? Useful for
debugging and charting, but can take up a lot of memory.
History is kept in model . snapshot.spikeHistory.
(default = false)

Retain record of membrane potentials from simulation?
History is kept in model.snapshot.potentialHistory.
(default = false)

Number of spike samples to include in the moving average

window for STA measure calculation. Can be overridden for
each STA measure.

Cell array(numCe11Groups) of cell group structs. See Cell

Group “internal state variables”, above.

Struct array(numInputBlocks) of input block structs. See
Input Block “internal state variables”, above.

Struct containing temporarily saved information from one "batch”

of simulations; can be deleted at any time to free up memory.

cellGroup
inputBlock
snapshot
inputData
spikeHistory
potentialHistory
v 1.02

Matrix(numInputs,numSamplesPerBatch,
numIterationsPerSample) of inputData

Cell array(numCe11Groups) of matrix(numCells,
numSamplesPerBatch, numIterationsPerSample)
containing retained spike history for later analysis.

Cell array(numCel1lGroups) of matrix(numCells,
numSamplesPerBatch, numIterationsPerSample)
containing retained cell potentials for later analysis.

Page 17

Measurements

To help gain insight into the network dynamics, various statistical measurements can be
made and collected while the network is running. The measurements collectively are

indicated with model initialization properties located in:
model.stats.measure.<measureName>,

where measureName iS the name given to a particular statistical measurements. Some
measurements can be displayed in specialized plots, for example the measure 'sTa"' is
displayed using the plot 'sTa', and the measure 'timesTA' is displayed with the plot
'STA movie'.

The type of the measure is specified with the measureType property. The following
measurement types are supported:

measureType Type of measurement:

'resError' Residual error from linear reconstruction

'STA' Spike-triggered average

'timeSTA' Spike-triggered average for movies

'correlation' RMS correlation of cells (or between two cell groups)

'spikeRate’ Moving average spike rate of a population

'sparseness' Sparsity measures (population, lifetime, and activity
sparseness)

'deltaWeight' Compute moving average of RMS weight change to test for
convergence

"timelineStats' Track metrics over extended time

"custom' User-defined callback function

Each measurement type has its own set of configuration parameters. These are the
supported configuration parameters for each measureType:

'resError':
sourceName Input block for reconstruction, e.g. 'cg Vle.in input'
numAvgSamples How many input samples to include in the moving average
window
normalize normalize reconstruction magnitude to unit variance?
(default = true)
timeSeries Assume time-series input (default = false)
sigmaWeighting Gaussian sigma for local (time-series) averaging. Only
applies when timeSeries == true (default =10)
rmsResErr (out) moving average RMS reconstruction error
"STA':
sourceName Cell group to analyze, e.g. 'cg Vle'
numAvgSamples Number of spike samples to include in the moving average
window (default = model.stats.numSTASamples)
STA (out) measured spike-triggered average (moving average)
'timeSTA':

v 1.02 Page 18

v 1.02

timeInterval

numFrames
STA

correlation'

sourceName

rmsCorrelation

spikeRate':
sourceName

spikeRate

sparseness':

sourceName

numAvgSamples

timeSparseness
popSparseness

activitySparseness

deltaWeight'
deltalInterval

windowSize

ib (1)

name

cgIld
ibId
srcId
dw

cg (i)
name
cgld
dThresh
dw

ddw
dThresh

ddThresh

Array(1, 2), the time interval of the movie (-/+ # iterations).
(default = [-numInterationsPerSample/2, 0])

Number of movie frames to collect over timeInterval

(out) measured spike-triggered average movie (moving
average)

A cell group ('cg_xxx"') or a cell array of two cell groups
(e.0. {'cg_xxx', 'cg yyy'} indicating which cells to
analyze for correlation.

(out) the measured RMS correlation

Cell group to analyze, e.g. 'cg Vle'
(out) measured spike rate (moving average)

Cell group to analyze, e.g. 'cg Vle'

How many test samples to include in the moving average
windows

(out) lifetime sparseness (moving average)

(out) population sparseness (moving average)

(out) activity sparseness (moving average)

The interval in time units for calculating dw (default = 1000)

The moving average window for RMS calculation in time
units (default = deltalInterval)
Information collected on input block # i (i is arbitrary)
A human-readable name of this input block, e.g. 'Vie-
>V1i'!
Cell group index of this input block
Input block index of this input block within its cell group
Cell group id of the input source
The moving average RMS weight change (units = dw /
timeUnit)
information collected on cell group # i (1 is arbitrary)
A human-readable name of this cell group, e.g. 'vVle'
Cell group id of this input block
The moving average RMS threshold change (units =
dThresh / timeUnit)
The moving average RMS weight change across all weight
sets (units = dWw / timeUnit)
The derivative of dw

The moving average RMS spike threshold change across all
cell groups (units = dThresh / timeUnit)

The derivative of dThresh

Page 19

'timelineStats'

metricExpr The metrics to track (model-specific MatLab expressions)

historySize Number of historical samples to collect before recycling
(default =1000).

'custom':

measureFn Function pointer of formm = fn(m, model,
spikeHistory) of the measure to calculate.

Plots and Figures

To view what the network is going, various plots and figures are supported which will be
updated periodically while the network simulation is running. These plots can also be
made interactively from the MatLab command console.

To specify a figure that should be drawn periodically, a figure descriptor can be provided
in the following cell array:

model.stats.figure{}

Figured can also be plotted interactively by calling:
NetModel Plot (model, figureParams)

For an example of some of the different types of plots and their plotType hame, see
Example Plots at the top of this document.

Each figure struct may contain the following subfields:

figureNum Figure number to use. (default, assigned automatically starting at
1001)
title Title to use to label the figure
sourceName A name identifying the signal source for the chart. Examples:
'cg Vle'or'cg Vle.in V1i'
plotType Type of plot to draw in this figure (see plotType below)
"STA' Spike-triggered average
'STA movie' Spike-triggered movie
'inputImagePatches' Batch of input training samples (either still image patches
or image patch movie clips)
'weightPatches' Grid of 2D image patch basis functions
'weightMatrix' Image showing 2D weight strengths, with scale
'weightDistribution' Histogram showing distribution of weight values
'weightDistributionAll' Histogram showing weight distributions for all input
blocks
'weightCorrelation' Scatter plot comparing recurrent A>B and B> A weights
'spikeRateHistogram' Histogram of spike rates across training samples or spike
rates across cells
'populationActivity' Line plot of mean spike rate over time, all cell groups

'connectionDensities' Shows where connections occur geospatially

v 1.02 Page 20

'STAWRatioHistogram'
'rStdHistogram'
'spikeRaster’'
'spikeRasterAll’
'spikeRasterAllImage’

'spikeRasterAllMulti’
'potential’
'networkDynamics'

'timelineStats'

'cellGroupVars'
'custom'

'composite!

Bar chart showing distribution of STA/weight ratio
Histogram of reconstructed sample standard deviations
Raster plot of spikes over time

Raster plot of spikes over time for all cell groups

Same as 'spikeRasterAll’' but with faster image
drawing

A grid of multiple raster plots

Timeline plot of the evolving potentials of active cells
Plot cell potentials and spike raster for whole network

Long-term timeline ticker of tracked metrics (e.qg.
spikeRate, threshold,...)

Plot cell group activity metrics
A user-defined figure drawn via callback function
A figure composed of other figures

Special fields for particular plot types (plotType in quotes):

'weightPatches'

maxDisplay

combinePlusMinus

'STA':
sourceName

measureName

'STA movie'
numFrames
playDuration

minImageSize

'weightDistribution'
sourceName
uselogScale

minWeight

numBins
plotStyle

'weightDistributionAll'

'weightCorrelation'

sourceName

'spikeRateHistogram':

v 1.02

Max number of patches to display.

Subtract second half of weights from first to recreate
receptive fields in factored plus-minus scenario

Cells to use for spike trigger (e.g. 'cg Vle')

Name of an STA measure to use as source for plot (use only
One of sourceName Or measureName)

How many frames to display in the movie (default = 5)
Duration of clip playback in seconds (default = 1)

Minimum image size so it isn't too small to see (default =
300)

Which weights to display (e.g. 'cg Vle.in input')
If true, use a log scale on the X (weight size) axis

If provided, discard all weights with magnitude smaller than
minWeight

If provided, overrides the auto-calculated number of bins
either '1ine' or 'bar'. (default="1ine")

[same properties as 'weightDistribution']

Two bi-directed input blocks, e.g. {'cg V1i.in Vle',
'cg Vle.in V1i'}

Page 21

dimension

numBins

'STAWRatioHistogram':

sourceName

measureName
'spikeRasterAll’

bgColor

markerSize
'spikeRasterAllImage’
networkId

'potential':
sourceName
networkId

normalize

maxLines

colormap

celllIds

'networkDynamics'
networkId
'timelineStats'

metricExpr

colormap

legendText

legendLocation
'cellGroupVars'

varNames

showPDF

v 1.02

Which spike rate measurements to use, either
'perSample' Or 'perCell'.

Number of bins to use when drawing histogram (optional). If
numBins = 'tabulate', then perform discrete value
tabulation.

Which weights to display (e.g. 'cg_Vle.in input')
which STA measure to use (optional)

Background color for MatLab scatter plot (default= [0 0 0]
= black)

Area size to use for spike markers (default = 11)

Which network (sample) to display when for multi-sample
simulations (default = 1)

Which cell group to display (e.g. 'cg Vle')

Which network / sample to plot (default = 1)

Rescale each cell's membrane potential to be relative to its
spike threshold, so that the cell spikes at potential >= 1.
(default = true)

How many lines to draw (default = 40)

Colormap to use, from 'help colormap'. 'Lines' and
'"Winter' are good. Can also be an explicit RGB table.
'cellColor' will use cell-by-cell colors in the
cellGroup.cellColor field. 'colorRamp' will generate
ramp based on the cell group's displayColor.
absColorRamp does the same thing, but always assigns a
given cell the same color. (default = 'Lines")

Which cells to plot and in what order (overrides automatic
ranking based on cell activity)

Which network / sample to plot (default = 1)

A cell array of MatLab expressions to track
Matrix(N,3) of RGB colors to use for lines. (default =
colormap ('Lines"'))

Cell array of labels for each line plotted

Where to place the legend (default = ' SouthWest").

Cell array(N) of variables to plot. The first variable becomes
the dependent variable on X axis, and all remaining
variables are plotted on the Y axis against the X variable.
(required)

Draw probability distribution? (default = false)

Page 22

normalize Normalize y values to the mean (default = false unless
multiple lines are drawn)

colormap Colormap to use, which is a matrix(N,3) of RGB values. []
indicates default to colormap ('Lines"'). (default = [])
legendText Cell array of names for each variable (optional)
lineWidth Line with to use for line plotting (default = 1. 5)
fontSize Font size for text (default = 13)
'custom':
figureFn Function pointer of form fig = fn(fig, model,

spikeHistory) to plotinto a drawing context that has
already been established.

'composite!
subFigure({} Subfigures (only one level of nesting is allowed)
layoutDims dimensions [rows, cols] for plot arrangement (optional)
Printing

To monitor network dynamics and progress during learning, a line of statistics can be
printed every so often to the console. The values on the line to be printed are specified

as fields of the structure:
model.stats.print.<printName>

Each <printname> substruct must have exactly one of the following subfields:

measureName The name of a measure to use (uses the main metric)
matlabExpr A string containing a MatLab expression to evaluate
builtin A string naming a built-in field to evaluate

'sampleCount’ Total number of samples that have been used for training

v 1.02 Page 23

4. Selected Functions

This section describes the API to some of the high-level functions of the neurosim
model.

RunVisionNetworkSimulation

Build and train a spiking circuit model that works on natural images.

Usage:
model = RunVisionNetworkSimulation (params)
model = RunVisionNetworkSimulation (params, model)

Inputs:

params Configuration parameters:
numInputSamples Number of image patch samples to train on (default = 10000)
printSummary Print column headers and time elapsed summary (default =
true)

model Parameters for constructing model. Required if generating a

new model. Ignored if an already-constructed model is
provided as a second parameter.

model An already-constructed model to use. Providing this causes
params.model to be ignored. (optional)

NetModel Figure

Draw a figure based on model state. See Plots and Figures, above, for details.

Inputs:
model The model (read-only)
figParams The figure specification parameters. See Plots and Figures,
above, for a detailed list of figure properties by plot type. Figure
properties can include:
figureNum Figure number to use (optional)
title Figure title (optional)
Usage:

NetModel Figure (model, figParams)
NetModel Figure (model, plotType, paraml, valuel, param2, valueZ2,
.)

v 1.02 Page 24

NetModel InitV1eV1i

Initialize an E-I Net network model with excitatory (E) and inhibitory (I) populations

Initialize a basic V1 network circuit model that uses two cell groups:
vle — Excitatory cells with input from image, V1i, Vl1e
= Vle—>Vle connections are disabled by default, except in SAlLnet mode)
v1i — Inhibitory cells with input from image, V1i, Vle
* input->V1i connections are disabled by default

The connections from V1e—->V1e are normally disabled. When enabled, these are
inhibitory connections to match the lateral inhibition model of SAILnet.

A representative subset of parameters are shown here. Please see the MatLab source
file NetModel Initvlevli.m for a complete list of supported parameters and their
defaults. The defaults vary by model subtype.

Usage:
Model = NetModel InitVleVli (params)

Input configuration parameters:

modelSubtype Which variation of the E-I network is desired:
"jneuroscience’ Model used in the J. Neuroscience paper (CM rule, STDP)
'SAILnet' SAlLnet: Only one neuron layer, F rule
'cm' Use the correlation measuring rule for all connections
other than input->E (default)
'ho fb' Use the HO learning rule for E->1 connections and the
foldiak bounded exp rule for inhibitory connections.
learningRate Learning rate to apply to the model as a whole. If O, learning is
disabled for the whole model. (default = 1).
stdpEnvelopeShape How to average spikes for input to learning; ignored if

meanRatelLearning = true. (default =
'expDecay continuous')

'expDecay continuous' Use exponential moving average
'expDecay continuous_all’ Use exponential moving average, including for
static inputs
'gaussian' Use a temporal gaussian weighting
cgDefaults Default parameters for all cell groups (see Cell Group for all
available parameters)
cg Vle Cell group parameters for the excitatory (E) cells
numCells Number of E cells to use in the circuit model
initSpikeThresh Value to initialize E spike thresholds to
threshAdaptRate Learning rate for E cell spike thresholds
in input Parameters for the image—>E connections (see Input Block)
in V1i Parameters for the 1> E connections (see Input Block for
full list)
learningRate Learning rate for [>E connections

v 1.02 Page 25

in Vile Parameters for the E->E connections, SAlLnet model only
(see Input Block for full list)

cg V1i Cell group parameters for the inhibitory (l) cells
numCells Number of | cells to use in the circuit model
initSpikeThresh Value to initialize | spike thresholds to
threshAdaptRate Learning rate for | cell spike thresholds
in Vie Parameters for the E->1 connections (see Input Block for
full list)
learningRate Learning rate for E->1 connections
in V1i Parameters for the -1 connections (see Input Block for full
list)
learningRate Learning rate for I->1 connections

[see Model, CellGroup, and Input Block sections, above, for more model parameters]

Output:
model The initialized network model

NetModel InitEINet

Initialize an E-I Net network model with excitatory (E) and inhibitory (I) populations. This
is a simplified model from V1eV1i above. The cell group names are “” and “1” instead of
“vie” and “v1i”. Otherwise all the model parameters from NetModel Initvlevli apply
here also.

NetModel_Init

Initialize a spiking network simulation model.

Self-connections:
If a cell group is connected to itself, the input block parameter
'noSelfConnections' Will be set to true by default. For fully connected
networks, the diagonal weights, weight (i, 1), will be clamped to zero.

Usage:
model = NetModel Init (params)

NetModel UpdateFast

Execute many time steps of a spiking network simulation. For increased learning speed,
several networks can be simulated in parallel but with different inputs. This allows the

v 1.02 Page 26

optimized matrix math routines to execute the highest floating point operations per
second.

This optimized routine performs the same function as NetModel Update but up to 40
times faster. It achieves additional speed in the following way:

e Performs the full network simulation in local variables
Performs many network iterations in a single call (optional)
Simulates multiple networks simultaneously in parallel (optional)
Can use average firing rates rather than spike-timing plasticity (optional)
Calculates weight updates in batch using matrix multiply

The following constants define the size of the simulation:

numNetworks How many identical networks (but with different inputs and
internal state) to simulate in parallel. When 100 input samples
are processed simultaneously, 100 clones of the full network are
created and simulated. This allows MatLab to do substantial (up
to 40x) optimizations with matrix math and multi-core parallel
computation.

numIterations How many simulation time steps to iterate through

Each model simulated has the following basic structure:

numCellGroups The number of separate neuron populations in the model. Each
neuron population has its own behavior and connectivity

parameters. For each Ce11Group:

numCells The number of identical neurons in that cell group
numInputBlocks How many input types (from other cell groups) are receive.
For each InputBlock:
numInputs How many inputs of that type does each cell receive
weight matrix of connection weights from all input cells to all
output cells.
dweight Accumulated (but not applied) weight matrix changes

If the initialState input parameter is provided, then the network state contained in
initialstate Will be used instead of the state contained in the model's cell groups.
Each state field (u, vy, y_ave) can optionally contain a matrix of multiple columns, in
which case each column represents a separate parallel network to be simulated in
parallel and in batch for faster performance. Any variables or cell array values that are
null or missing will be assumed to be initialized to zero.

Usage:
Model = NetModel UpdateFast (model, numIterations)
Model = NetModel UpdateFast (model, numIterations, initialState)

[model, finalState] = NetModel UpdateFast (model, numlIterations,
initialState)
Inputs:
model The simulation model state
numIterations The number of simulation iterations to execute

v 1.02 Page 27

initialState
u
Yy
y_ave
Output:
model
finalState
u
Yy
y_ave
y_history
v 1.02

Struct containing the initial cell group state for batch processing.
Any variables or values missing will be filled in with zeros. If the
initialState structis not provided, the state in the cell
groups will be used instead. (optional)
Cell array(numCel1lGroups, 1) of matrix(numCells,
numNetworks) representing initial cell potentials. (optional)
cell array(numCel1Groups, 1) of Matrix(numCel1ls,
numNetworks) representing the last spike output of the
cells. Alternatively, y can be a matrix(numCells,
numNetworks, numIterations), in which casey

represents the input arriving from an external cell group to
use for each iteration. (optional)

Cell array(numCel1lGroups, 1) of matrix(numCells,

numNetworks) representing the most recent spike rate
moving average output of the cells. (optional)

The updated simulation model state
The final state of the network (optional)

Matrix(numCells,numNetworks): ending cell potentials
Matrix(numCe11ls,numNetworks): last spike status

Matrix(numCells,numNetworks): last iteration of running
average

Matrix(numCells, numNetworks, numIterations): spike
history for all iterations and all networks

Page 28

